NON-CONVENTIONAL ENERGY SOURCES SIGNALS AND SYSTEMS

Subject Code : MT601OE

Regulations : R18 - JNTUH

Class : III Year B.Tech EEE II Semester

Department of Electrical and Electronics and Engineering BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

Ibrahimpatnam - 501 510, Hyderabad

NON-CONVENTIONAL ENERGY SOURCES (MT6010E) COURSE PLANNER

COURSEOVERVIEW:

The main objective of this subject is given below:

- To learn about the various renewable non conventional energy resources that are available in the earth.
- To study about the operation of solar PV system, wind energy conversion system, biomass, wave, tidal and OTEC energy systems.

PREREQUISITES:

Level	Credits	Periods/ Week	Prerequisites
UG	3	4	1. Power Systems

COURSEOBJECTIVES:

At the end of the course, the students will be able to:

- Demonstrate the ability to use basic knowledge in mathematics, science and engineering and apply them to solve problems specific to mechanical engineering (Fundamental engineering analysis skills).
- Design a system to meet desired needs within environmental, economic, political, ethical health and safety, manufacturability and management knowledge and techniques to estimate time, resources to complete project.

COURSE OUTCOME:

COCI	ASE OUTCOME.	
S.No	Description	Bloom's Taxonomy Level
CO1	Understand the basic concepts and operation of renewable energy systems	Knowledge, Understand (Level 1, Level 2)
CO2	Remember the ideas and statistics of current RES availability and usage.	Knowledge, Understand (Level 1, Level 2)
CO3	Analyze the problems in RES installation in real time.	Apply (Level 3)
CO4	<i>Identify</i> the other NCES and available sources improvement.	Understand, Apply (Level2, Level 3)
CO5	Apply the renewable energy systems in real time applications.	Understand, Apply (Level 1,Level 3)

1. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (PO)	Level	Proficiency assessed by
	Engineering Knowledge: Apply the knowledge of mathematics, science,		Lectures,
PO1	engineering fundamentals, and an engineering specialization to the	3	Assignments
	solution of complex engineering problems.		university exams.

PO2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Slip tests, Surprise tests and Mock tests
PO3	Design/Development Analysis: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Hands on Practice sessions
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Lab Sessions and model developments
PO5	Modern Toll Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	Practices new Soft computing techniques
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	2	Seminars & Project work
PO7	Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	3	
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	-	
PO9	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	•	
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	Seminars, Discussions
PO11	Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	2	Develop new projects
PO12	Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	Research

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: None

2. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSO)	Level	Proficiency assessed by
PSO1	Talented to analyze, design, and implement electrical & electronics systems and deal with the rapid pace of industrial innovations and developments.	2	Lectures, Assignments.
PSO2	Skillful to use application and control techniques for research and advanced studies in Electrical & Electronics Engineering domain.	2	Participate events, seminars & symposiums

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: None

COURSE CONTENT: AS PER JNTUH SYLLABUS

UNIT - I

PRINCIPLES OF SOLAR RADIATION

Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extra-terrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.

UNIT II

SOLAR ENERGY COLLECTION, STORAGE & APPLICATIONS

Collection:Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

Direct Energy Conversion: Need for DEC, Carnot cycle, limitations, principles of DEC. Thermoelectric generators, seebeck, peltier and joul Thomson effects, Figure of merit, materials, applications, MHD generators, principles, dissociation and ionization, hall effect, magnetic flux, MHD accelerator, MHD Engine, power generation systems, electron gas dynamic conversion, economic aspects. Fuel cells, principles, faraday's law's, thermodynamic aspects, selection of fuels and operating conditions.

UNIT - III

Solar Energy Storage And Applications: Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applications- solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion

Ocean Energy: OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics..

UNIT_IV

Wind Energy: Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria.

UNIT - V

Bio-Mass: Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C. Engine operation and economic aspects.

Geothermal Energy: Resources, types of wells, methods of harnessing the energy, potential in India.

GATE SYLLABUS: Not Applicable IES SYLLABUS: Not Applicable

SUGGESTED BOOKS:

TEXT BOOKS:

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi, 2003
- 2. K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi, 2003.

REFERENCE BOOKS:

- 1. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing, House, New Delhi, 2004
- 2. Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi, 2004.
- 3. Non Conventional Energy Sources. Rai

COURSE PLAN (WEEK-WISE):

DEPARTMENT OF ELECTRICAL& ELECTRONICS ENGINEERING

LESSON PLAN ACADEMIC YEAR 2020-2021 II SEM

Course Instructor : S.Marlin Class: EEE-III-A/B

Subject: Non Conventional Energy Resources; WEF:26/03/2021

Subject:	110	II CC	1	1				
Sessi on	1 1	D a t e		Link for PDF	Link for PPT	Bloom's Taxono my	Teaching Methodology	Tex t Boo k
			UNIT-I					
1	1		Over View of Conventional & Renewable Energy Sources		-	Understand		
2	1		Need & Development of Renewable Energy Sources, Type s of Renewable Energy Systems	https://drive.google. com/file/d/1d2BYm KAaf2Oa1geuFBB XYKzQ3X3iLJ0D/ view?usp=sharing	https://drive.google.com /file/d/1_F3i8DgmbMq 0w_suEV7bkv1qavAEJ P7_/view?usp=sharing	Understand	PPT, Digital Pad	T1,T2 & R1
3	1		Renewable and Non- Renewable Energy Sources, the solar energy option,		https://drive.google.com /file/d/1DSP7U-	Understand	PPT, Digital Pad	
4	1		Environment al impact of solar power, physics of the sun, the solar constant	https://drive.google. com/file/d/1XHCg1 xaYBpNQU23RvRI FBs4TPOaLAk- 2/view?usp=sharing	efONKpTEbA9FGkEJI hPDHPKjHj/view?usp= sharing	Remember		
5	1		extra- terrestrial and terrestrial solar radiation			Understand		

6	1	solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.	https://drive.google. com/file/d/1XHCg1 xaYBpNQU23RvRI FBs4TPOaLAk- 2/view?usp=sharing	https://docs.google.com /presentation/d/1DSP7U - efONKpTEbA9FGkEJI hPDHPKjHj/edit#slide= id.p2	Remember	PPT, Digital Pad	
		Students PPT					
7	1	Topics Beyond Syllabus: Issues In HRES					
8	1	Mock Test –					
9		UNIT-II					
10	2	Flat plate and concentrating collectors		https://drive.google.com /drive/folders/1TZUsqI qGY56KQzrYrcAMfhB _gdiVrgiC	Understand	PPT, Digital Pad	T1,T2 & R1
11	2	, classification of concentrating collectors, orientation and thermal analysis,	https://drive.google. com/file/d/1r6nHPr e1vCFftQhFViBR1 DZ1zpVQJI5O/vie w?usp=sharing		Remember		
12	2	advanced collectors	https://drive.google.	https://drive.google.com /drive/folders/1gUjRcY JEMOZrx7i3vTLZRJP Z5pdAqR6G	Understand		
13	2	: Need for DEC, Carnot cycle, limitations,	com/file/d/1r6nHPr e1vCFftQhFViBR1 DZ1zpVQJI5O/vie w?usp=sharing	https://drive.google.com /file/d/1cyXo2qcecgO8 yxed05kkFDu8QUJfQ V4x/view?usp=sharing	Remember	PPT, Digital Pad	
14	2	principles of DEC. Thermoelectric generators, seebeck,	https://drive.google. com/drive/folders/1	https://drive.google.com/file/d/1cyXo2qcecgO8yxed05kkFDu8QUJfQV4x/view?usp=sharing	Understand		
15	2	Flat plate and concentrating collectors	gUjRcYJEMOZrx7i 3vTLZRJPZ5pdAq R6G	https://drive.google.com /drive/folders/1gUjRcY JEMOZrx7i3vTLZRJP	Remember		
16	2	peltier and joul		Z5pdAqR6G	Understand		

		Thomson				
		effects				
17	2	Figure of merit, materials, applications, MHD generators, principles, dissociation and ionization		https://drive.google.com /drive/folders/1gUjRcY JEMOZrx7i3vTLZRJP Z5pdAqR6G	Remember	PPT, Digital Pad
18	2	classification of concentrating collectors, orientation and thermal analysis, advanced collectors.	https://drive.google.	https://drive.google.com /drive/folders/1gUjRcY JEMOZrx7i3vTLZRJP Z5pdAqR6G	Understand	PPT, Digital Pad
19	2	hall effect, magnetic flux, MHD accelerator	com/drive/folders/1 zTLExpZinPryOLz AISpvk5VP3hPxw P1J?usp=sharing	https://drive.google.com /drive/folders/1gUjRcY JEMOZrx7i3vTLZRJP Z5pdAqR6G	Remember	PPT, Digital Pad
20	2	MHD Engine, power generation systems, electron gas dynamic conversion, economic aspects.			Understand	
21	2	Hybrid Systems, Wind Resource Assessment		https://drive.google.com /drive/folders/1gUjRcY JEMOZrx7i3vTLZRJP Z5pdAqR6G	Remember	
22	2	Fuel cells, principles, faraday's law's, thermodyna mic aspects, selection of fuels and operating conditions	https://drive.google. com/drive/folders/1 zTLExpZinPryOLz AISpvk5VP3hPxw P1J?usp=sharing			
		Students PPT				
23	H	UNIT-III				
		U. 144 III				<u> </u>

24	3	Different		https://drive.google.com /drive/folders/1gUjRcY	Understand	PPT, Digi	
		methods of solar storage	https://drive.google.	JEMOZrx7i3vTLZRJP Z5pdAqR6G		tal Pad	T1,T2 & R1
25	3	Sensible, latent heat and stratified storage	com/drive/folders/1 gUjRcYJEMOZrx7i 3vTLZRJPZ5pdAq R6G	https://drive.google.com /drive/folders/1gUjRcY JEMOZrx7i3vTLZRJP Z5pdAqR6G	Remember		
26	3	solar ponds			Understand		
27	3	Solar Applications- solar heating/cooli ng technique	https://drive.google.	https://drive.google.com /drive/folders/1gUjRcY JEMOZrx7i3vTLZRJP Z5pdAqR6G	Remember		
28	3	solar distillation and drying	com/file/d/1XHCg1 xaYBpNQU23RvRI FBs4TPOaLAk- 2/view?usp=sharing		Understand	PPT, Digi tal Pad	T1,T2 & R1
29	3	photovoltaic energy conversion		https://drive.google.com /drive/folders/1gUjRcY JEMOZrx7i3vTLZRJP Z5pdAqR6G	Remember		
		Students PPT			Understand		
30	3	OTEC, Principles utilization, setting of OTEC plants	https://drive.google. com/drive/folders/1 gUjRcYJEMOZrx7i 3vTLZRJPZ5pdAq R6G		Remember		
31	3	thermodyna mic cycles.		https://drive.google.com /file/d/1Ci- 18LRSIZ3AKRiXLtJI- xTWEwQpZw2y/view? usp=sharing	Understand		
32	3	Tidal and wave energy: Potential and conversion techniques	https://drive.google. com/file/d/1Ci- 18LRS1Z3AKRiXLt JI- xTWEwQpZw2y/vi ew?usp=sharing		Remember		
33	3	mini-hydel power plants, and their economics			Understand		
34		Mock Test – II			Remember		
35	4	UNIT-IV					
36	4	Wind Energy: Sources and potentials	https://drive.google. com/file/d/1zOfGM CmGZ9tUBEPcny4 uwcNgN5Q9kz-	https://drive.google.com /drive/folders/1gUjRcY JEMOZrx7i3vTLZRJP Z5pdAqR6G	Understand	PPT, Digi tal Pad	T1,T2 & R1

37	4	horizontal and vertical axis windmills	6/view?usp=sharing	https://drive.google.com /drive/folders/1gUjRcY JEMOZrx7i3vTLZRJP Z5pdAqR6G	Remember		
38	4	horizontal and vertical axis windmills			Understand		
		Students PPT					
39		UNIT-V					
40	5	Principles of Bio- Conversion, Anaerobic/ae robic digestion	https://drive.google. com/file/d/18Kjm1x r3_oLcjfU3F3GX2 ZUTkv2J32IT/view ?usp=sharing	https://www.slideshare. net/asertseminar/biogas- ppt	Understand		
41	5	, I.C. Engine operation and economic aspects.		https://drive.google.com /drive/folders/1gUjRcY JEMOZrx7i3vTLZRJP Z5pdAqR6G	Remember	PPT, Digi tal Pad	T1,T2 & R1
42	5	. types of Bio-gas digesters, gas yield, combustion characteristic s of bio-gas, utilization for cooking,	https://drive.google. com/file/d/18Kjm1x r3_oLcjfU3F3GX2 ZUTkv2J32IT/view ?usp=sharing	https://www.slideshare. net/asertseminar/biogas- ppt	Understand		
43	5	Geothermal Energy: Resources, types of wells		https://drive.google.com/file/d/1dM44j0_dZlkHois9empnbOR82ow-fncb/view?usp=sharing	Remember		
44	5	methods of harnessing the energy, potential in India.	https://drive.google. com/file/d/19U8tUr Y9FyZW44xrkPV2 VVZwBCDKvfro/v iew?usp=sharing	https://drive.google.com /file/d/1dM44j0_dZlkH ois9empnbOR82ow- fncb/view?usp=sharing	Understand		
		Students PPT					
45		University questions Revision					
46		University questions Revision					
47		University questions Revision					
48		Topics Beyond Syllabus:					

		offs	eys On hore ECS											
	Progr	am Out	comes							P	rogram S	pecifc Ou	tcomes	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	1	2	1	_	_	_	-	_	2	2
CO2	3	2	3	2	2	2	2	-	_	_	ı	_	2	1
CO3	2	3	2	2	3	2	3	_	_	_	ı	_	1	2
CO4	3	3	3	2	3	2	2	_	_	_	_	_	2	3
CO5	2	2	2	2	2	2	2	_	_	_	_	_	2	2
AVG	2.6	2.4	2.4	1.8	2.2	2.0	2.0	_	_	_	-	_	1.8	2

MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

QUESTION BANK (JNTUH):

UNIT I

Short Answer Questions

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	List the various types of non conventional energy sources	Understand	2
2	What are the limitations in RES?	Understand	1
3	Mention the present contribution of different types of plants in India	Knowledge	2
4	What is the approximate amount of total power generation in India?	knowledge	2
5	What are conventional sources of energy?	Knowledge	2

Long Answer Questions

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Write about the availability energy consumption pattern and growth rate in India.	Knowledge	2
2	Explain why it is necessary to develop non-conventional method of generating electrical energy.	Understand	2
3	What are the conventional sources of energy and explain briefly?	Knowledge	1
4	What are the non-conventional sources of energy and explain briefly?	Knowledge	2
5	Discuss the following (a) Obstacle to the implementation of renewable energy sources. (b) Advantages of renewable energy sources.	Knowledge	2

UNIT II Short Answer Questions

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	List the various types of solar energy collectors	Knowledge	2
2	List any four applications of solar collectors	Understand	2
3	List any four disadvantages of solar energy	Understand	2
4	Draw the block diagram of stand-alone PV system.	Understand	2
5	Draw the block diagram of grid connected PV system.	Understand	2

Long Answer Questions

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Explain in detail about the operation of solar PV system.	Understand	2
2	Compare flat plate collector and concentrated collector	Understand	2
3	Explain in detail about stand alone PV system.	Knowledge	2
4	Explain in detail about grid connected PV system.	Knowledge	2
5	Explain principle of Natural and Forced convection	Understand	2
6	Explain in detail about anyone of the solar engines.	Understand	2

UNIT III

Short Answer Questions

,, , , , , , ,	Swel Questions			
S.No	Question	Blooms Taxonomy Level	Course Outcome	
1	List the various components of wind energy system	Understand	2	
2	Write down the various types of wind power plants	Understand	2	
3	What is the principle of wind power generation?	Apply	3	
4	What are the types of wind mills?	Understand	2	
5	What are factors consider while selecting wind power generation?	Understand	2	

Long Answer Questions

S.No	Question	Blooms Taxonomy Level	Course Outcome
1.	Explain the principle of wind energy conversion system.	Remember	3
2.	Explain all the parameters in wind energy system design.	Apply	3
3	Describe about the horizontal axis wind mill	Understand	2
4.	Describe about the vertical axis wind mill	Understand	2
5.	Explain the working principle of induction generator.	Understand	2

UNIT IV Short Answer Questions

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	What is geothermal power?	Understand	2
2	Discuss the disadvantages of geothermal plant.	Understand	2
3	Discuss the advantages of geothermal plant.	Apply	3
4	What are the constituents of biogas?	Understand	2
5	Write any two items used as biomass fuels	Understand	2

Long Answer Questions

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Explain with neat sketches, the operation of a geothermal power plant.	Understand	2
2	a) Write short note on bio energy from agriculture waste.(b) Write short note on bio energy by burning plants.	Understand	2
3	(a) Write about energy from biomass.(b) Write about energy from biogas.	Understand	2
4	What are the factors affecting biogas generation.	Apply	3
5	What is geothermal energy? How can geothermal energy are utilized for electric power Generation?	Understand	2

UNIT V

Short Answer Questions

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Differentiate tide and wave	Understand	2
2	Mention the type of tidal power turbine.	Apply	3
3	What are spring and neap tides?	Apply	3
4	What is OTEC energy	Understand	2
5	Give the advantages of tidal power plant.	Understand	2

Long Answer Questions

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Explain how ocean tides are generated and how the power can be tapped? Discuss the limitations of this method.	Understand	2
2	Describe the construction and principle of operation of a turbine used for tidal power.	Understand	2
3	Describe the single basin arrangement in tidal power generation.	Apply	3
4	Describe the different types of turbines in use for small scale hydroelectric Power Plants.	Apply	3
5	What are the main types of OTEC power plants? Describe their working in brief.	Apply	3

OBJECTIVE QUESTIONS:

UNIT											
MC	CQ(s): Which	of	the	following	is	a	disadvantage	of	f	renewable	energy?
	a)					High					pollution
	b)		Available		only		in	_	fe	ew	places
	c)	1	.1	High			runn	ing			cost
	d) Unreliab	ne supp	piy								
		l is an	electrical o	levice that co			light directly	y into el	lectric	ity by the	
	a)					otovoltaic					effect
	b) c)					Chemical mospheric					effect effect
	d) Physical	effect			7 10	позрпене					Circu
	In hydroe	electric	power.	what is n	necessarv	for the	production	of po	ower	throughout	the vear?
	a)		Dan		, , , , , , , , , , , , , , , , , , , ,	filled	r	_	ith		water
	b)		Hig	gh		amount			of		air
	c)			High			intense	;			sunlight
	d) Nuclear	power									
	The	mai	n	compositio	n	of	biogas		is		
	a)										Methane
	b)				(Carbon					dioxide
	c) d) Hydroge										Nitrogen
	a) b)	M	Agricu		N	and	Resource	Farm			Development Welfare
	c)		nistry	of	N	ew	and		Rene	wable	Energy
	d) Health a	na Fan	niiy weira	re							
Fill	l in the blan		ave a large	amount of in	nstalled gr	id interact	ive renewable	e power	capa	city in India.	
	The world'	s first	100% sola	powered air	rport locat	ed at					
	The largest	Wind	Farm loca	ted in India i	s located a	ıt	·				
	Is nuclear e	energy	a Renewał	ole Energy? _	·						
	Wind is be	eneficia	al resource	of energy as	it doesn't	cause	·				
UNIT											
M(CQ(s):	41 C.	11		1 4	.444*	.1	1 41			.1
	a)	the 10	ollowing e	nergy nas t	ne greate	st potentia Solar	u among ai	i the s	ource	s of renewal	
	b)					Wind					energy Energy
	c)					hermal					energy
	d) Hydro-e	lectrica	al energy								
	What	is	the	rate of	solar	ener	gy reacl	hing	the	earth	surface?
	a) b)										1016W 865W

	c) d) 1912	W									2854W
	What a) b) c) d) 2.1 X	is [1024]	total J/year	amount 3.8 9.2 5.4	of	solar	energy X X X	recei	ved by 102 102 102	4	atmosphere? J/year J/year J/year
	In a) b) c) d) Trans	what		rm is	S		energy ltraviolet Infrared ectromagne	is	radiated	from	the sun? Radiation radiation waves
	Solar a) b) c) d) Infra	radia		received	at	any	point Beam Diffuse	of	earth is	called _	Insolation Radiation Radiation
Fill	in the b		olar Co	nstant is		_					
	The ext	raterres	trial ra	diation flux	varies	by	% over a y	/ear.			
	Absorpt	ion of S	Solar ra	idiations at e	earth's	surface	occur due	to presen	ace of .		
	_			e angle made				_		rface.	
				neasured wit			•				
UNIT	Ш	idiution	is are ii	iousurou wit		·					
1.	 a) 2.9 X b) 1.6 X c) 1 MV d) 5MW How more a) 20,00 b) 12,00 	120 M 107 M V uch win 00 MW	IW IW ad powe	gy available er does India			ver the ear	th surfac	e is estimated	to be?	
3.	a) Unevb) Sun	MW the ma en land	in sour	ce for the fo	rmatic	on of win	d?				
4.	a) Rene b) Non-	ons pe of er wable renewa	energy ble ene	rgy	y?						
5.	c) Conv d) Com What ar a) Turk	mercial e used	energy		into e	electrical	energy?				

b) Generators

	e) Yaw motor	
	d) Blades	
T2411	n the blanks:	
6.	At what range of speed is the electricity from the wind turbine is generated?	
7.	Wind energy is harnessed as energy with the help of windmill or turbine.	
8.	The installed capacity of wind energy in India is aboutMW.	
9. 10.	The main source of formation of wind isinduction generator is used in wind power plant.	
UNIT I		
MC		
	1. The process of producing energy by utilizing heat trapped inside the earth surface is called	
	a) Hydrothermal energy	
	b) Geo-Thermal energy	
	c) Solar energy	
	d) Wave energy	
	2. What is hot molten rock called?	
	a) Lava	
	b) Magma	
	c) Igneous rocks	
	d) Volcano	
	3. How many kinds of Geo thermal steams are there?	
	a) 2	
	b) 3	
	c) 4	
	d) 5	
	4. What does EGS stand for in geothermal energy?	
	a) Engraved Geothermal systems	
	b) Enhanced geothermal system	
	c) Exhaust gas system	
	d) Engineered geo physical system	
	5. Which of the following forestry materials can be used as biomass?	
	a) Logging residues	
	b) Tallow	
	c) Fish oil	
	d) Manure	
Fill	n the blanks:	
6.	The hole on earth's surface from where the steam from the earth comes out is called as .	
7.	Biomass is useful to produce	
8.	Earth's outer layer rock is called as	
9.	The aerobic digestion of sewage is used to produce	
10.	The bio ethanol is subjected to rectification to remove	
10.		
I INITE		
UNIT V		
MC	Q(s):	
	1. How is OTEC caused?	
	a) By wind energy	
	b) By geothermal energy	
	c) By solar energy	
	d) By gravitational force	
	2. What does OTEC stand for?	
	a) Ocean thermal energy cultivation	
	b) Ocean thermal energy conversion	

c) Ocean techno energy conservation d) Ocean thermal energy consumption 3. Which country has world's largest tidal power plant? a) Netherlands b) South Korea c) Laos d) Bolivia 4. For exactly how much time does it take for one tidal cycle? a) 22h, 20min b) 24h, 50min c) 20h, 10min d) 22h, 50min 5. Which of the turbine can be mounted vertically and horizontally? a) Pelton wheel b) Kaplan turbine c) Gorlov turbine d) Francis turbine Fill in the blanks: 1. Water to the turbine is allowed through the _ 2. A tide whose difference between high and low tides is least is called as ____ tides occur when there is so much interference with continents. turbine is commonly used in tidal energy. 4. 5. The first wave energy project in India is kept at _____. 3. **WEBSITES:** 1. www.pveducation.org 2. https://mnre.gov.in/ 3. https://www.renewableenergyworld.com 4. https://www.iea.org

4. **JOURNALS**:

- 1. https://www.journals.elsevier.com/renewable-energy
- 2. www.mdpi.com/journal/energies
- 3. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews
- 4. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews

5. LIST OF TOPICS FOR STUDENT SEMINARS:

1. A brief about installed capacity of solar power plant in the world.

6. CASE STUDIES/SMALL PROJECTS

- 1. Real time installation of solar PV based projects.
- 2. Case study on installed solar tree.