CHEMISTRY

Subject Code: CH102BS

Regulations: R18 - JNTUH

Class : I Year B.Tech II Semester

Department of Science and Humanities

BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

Ibrahimpatnam - 501 510, Hyderabad

Chemistry (CH102BS) COURSE PLANNER

I. COURSE OVERVIEW:

Concepts in Chemistry are the foundation for any Engineering subject. Hence exposure to the basic concepts of Chemistry is a compulsory aspect to an Engineering graduate.

Introduce the students to atomic, molecular and electronic changes and band theory related to conductivity. As a course outcome they also acquire knowledge on electrochemistry, batteries and their function. The students also gain knowledge on corrosion and waste water treatment methods. As a part of this program further they attain the required concepts about stereochemistry and reaction mechanism of organic molecules. They acquire basic knowledge in spectroscopy and its application to medical and other fields. They are also trained in the synthesis of some drug molecules such as aspirin and paracetamol.

This way the course will build a firm base to students to further understand the engineering concepts efficiently and easily. The lab sessions impart practical exposure to different natural phenomenon in chemistry and to understand them completely.

II. PREREQUISITE(S):

• Students entering advanced engineering chemistry should have a firm grasp of basics of Electrochemistry and Stereochemistry

III. COURSE OBJECTIVES:

- To bring adaptability to new developments in Engineering Chemistry and to acquire the skills required to become a perfect engineer.
- To impart the basic knowledge of atomic molecular and electronic modifications to make the student to understand the technology based on them.
- To understand the basic principles of electrochemistry, corrosion and waste water treatment methods which are essential for the engineers and in industry.
- To acquire the skills pertaining to spectroscopy and to apply them for medical and other fields.
- To accomplish the knowledge of stereochemistry and synthetic aspects useful for understanding reaction pathways.

IV. COURSE OUTCOMES: The student will learn

S. no	Course Outcomes (CO)	Blooms
		level
CO1	The knowledge of atomic, molecular and electronic changes, band theory	Theory,
	related to conductivity.	Understand,
		Knowledge
CO2	The required knowledge about importance of water and understanding its	Understand,
	treatments methods.	Remember
		Theory
		Knowledge
		Apply
		Analyse
CO3	The required principles and concepts of electrochemistry, corrosion.	Theory

		Understand Apply
CO4	The knowledge of configurational and conformational analysis of molecules and reaction mechanisms.	Understand, Analyse
		Apply
CO5	The required skills to get clear concepts on basic spectroscopy and application to medical and other fields.	Understand, Remember Theory
		Knowledge Apply Analyse

V. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems	1	
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	1	
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations	1	
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	-	
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	1	LECTURES ASSIGNMENTS SEMINARS CHARTS
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	2	
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	-	
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	-	
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation make effective presentations, and give and receive clear instructions	-	
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments	-	
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life long learning in the broadest context of technological change.	-	

VII. SYLLABUS:

UNIT I: Molecular structure and Theories of Bonding: Atomic and Molecular orbitals. Linear Combination of Atomic Orbitals (LCAO), molecular orbitals of diatomic molecules, molecular orbital energy level diagrams of N_2 , O_2 and F_2 molecules. Π molecular orbitals of butadiene and benzene.

Crystal Field Theory (CFT): Salient features of CFT- Crystal Field Splitting of transition metal ion d-orbitals in Tetrahedral, Octahedral and square planar geometries. Band Structure of solids and effect of doping on conductance.

UNIT II:

Water and its treatment:

Introduction – hardness of water – causes of hardness – types of hardness: temporary and permanent – expression and units of hardness – Estimation of hardness of water by complexometric method. Numerical problems. Potable water and its specifications- Steps involved in the treatment of potable water - Disinfection of water by chlorination and Ozonization.

Boiler troubles:

Boiler feed water and its treatment– Calgon conditioning – Phosphate conditioning – Colloidal conditioning – External treatment of water by ion- exchange processes. Desalination of water – Reverse osmosis. Numerical problems.

UNIT III: Electrochemistry and Corrosion:

Electrochemistry: Electrochemical cells- **es**lectrode potential, standard electrode potential, types of electrodes – calomel, quinhydrone and glass electrode. Nernst equation. Determination of pH of a solution using quinhydrone and glass electrode. Electrochemical series and its applications. Numerical problems.

Batteries: Primary (Lithium Cell) Secondary batteries (lead- acid storage battery and Lithium ion battery).

Corrosion: Causes and effects of corrosion, Theories of chemical and electrochemical corrosion-Mechanism of electrochemical corrosion, Types of corrosion: Galvanic, Water-line and pitting corrosion. Factors affecting the rate of corrosion, Corrosion control methods-Cathodic protection-Sacrificial anode and impressed current cathodic methods. Surface coatings- metallic coatings-methods of application. Electroless plating of Nickel.

Corrosion control Methods: Cathodic protection-Sacrificial anode and impressed current cathodic methods. Surface coatings-metallic coatings-methods of application. Electroless plating of Nickel.

UNIT IV:

Stereochemistry, Reaction Mechanism and synthesis of drug molecules:

Introduction to representation of 3-dimensional structures, structural and stereoisomers, configurations, symmetry and chirality. Enantiomers, diastereomers, optical activity an Absolute configuration. Conformational analysis of n-butane.

Substitution Reactions: Nucleophilic substitution reactions: Mechanism of S_N1 , S_N2 reactions. Electrophilic and nucleophilic addition reactions: Addition of HBr to propene.

Markownikoff and anti Markownikoff's additions. Grignard additions on carbonyl compounds . Elimination reactions: Dehydro halogenations of alkyl halides. Saytzeff rule.

Oxidation Reactions: Oxidation of alcohols using KMnO₄ and chromic acid.

Reduction reactions: Reduction of carbonyl compounds using LiAlH₄ and NaBH₄. Hydroboration of olefins, structure, synthesis and pharmaceutical applications of Paracetamol and Aspirin.

UNIT V: Spectroscopic techniques and applications:

Principles of spectroscopy, selection rules and applications of electronic spectroscopy. Vibrational and rotational spectroscopy. Basic concepts of Nuclear Magnetic resonance Spectroscopy, chemical shift. Introduction to Magnetic resonance imaging.

SUGGESTED BOOKS:

TEXT BOOKS:

- 1. Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, New Delhi (2010)
- 2. Physical chemistry by P.W. Atkins
- 3. Fundamentals of Molecular Spectroscopy, by C.N. Banwell
- 4. Organic chemistry: Structure and Function by K.P.C. Volhardt and N.E. Schore, 5th Edition.
- 5. University Chemistry by B. M. Mahan, Pearon IV Edition.

REFERENCE BOOKS:

- 6. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi (2015)
- 7. Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi (2011)
- 8. Engineering Chemistry by Thirumala Chary and Laxminarayana, Scitech Publishers, Chennai (2016).

GATE SYLLABUS: NA

IES SYLLABUS: NA

VIII. COURSE PLAN:

Lecture No.	Week No.	TOPIC	Course learning outcomes	Text books
	UNIT -	-1		
1.		Introduction to Atomic and Molecular Orbitals -	Theory	
		Bonding in molecules		
2.		Linear Combination of Atomic Orbitals (LCAO)	Theory	1 0 7
3.		Molecular orbitals of diatomic molecules		1, 2, 7
4.		Molecular orbital energy level diagrams introduction		
5.	2	Molecular orbital energy level diagrams of N2, O2	Understand,	
	2	and F ₂ molecules.	Apply	

6.		Pi molecular orbtals of butadiene and benzene	Remember	
7.		Introduction to Crystal Field theory (CFT)- Salient	Theory	
		features of CFT		
8.		Crystal field splitting of d orbitals in Tetrahedral,	Understand	
		Octahedral and Square Planar geometries		
9.		Band structure of solids	Theory	
10.	_	Effect of doping on conductance.	Understand	
11.	3	Revision of unit-1		
12.		Mock Test – I		
	UNIT -	- 2		
13.		Hardness of water, Causes, Expression ,Units, Types	Understand,	
		of Hardness: temporary and permanent	Remember	
14.		Estimation of Hardness by complexometric method	Apply,	
		(EDTA), Numerical Problems.	Apply	
15.	4	Potable water- Its Specifications, steps involved in	Understand,	
		Treatment of potable water	Remember	
16.		Disinfection of Potable water by Chlorination &	Understand,	
		Ozonization.	Apply	1,6,7
		Bridge Class # 1		
17.			Theory and	
		Boiler feed water and its treatment	Apply	
18.	_	calgon, phosphate & colloidal conditioning	Apply	
19.	5	External treatment of water ion exchange process.	Understand	
20.		Desalination of water-reverse osmosis.	Theory	
	1	Numerical problems	Understand	
21.	6	Revision of Unit-II		
	UNIT	III		
22.		Electrochemical cells-electrode potential, standard	Theory	
		electrode potential		
23.		Types of electrodes-calomel,Quinhydrone and glass	Theory	
	6	electrode.		
24.		Nernst equation. Determination of pH of a solution	Understand,	
		using quinhydrone and glass electrode.	Derive	
		Bridge Class # 3		
25.		Electrochemical series and its applications.	Understand	
		Potentiometric titrations.		1, 6,7
26.		Batteries primary (Lithium cell) and secondary	Theory,	1, 0,7
	7	batteries (lead acid storage battery	Remember	
27.		Lithium ion batteries	Apply	
28.		Numerical problems.	Apply	
		Bridge Class # 4		
29.		Causes And effects of Corrosion-theories of chemical	Understand	
	8	and electrochemical corrosion-mechanism of		
		electrochemical corrosion.		
30.		Types of Corrosion:Galvanic, water-line and pitting	Theory	

		corrosion, Factors affecting rate of corrosion.		
31.		Corrosion control methods-Cathodic protection-	Apply	
		Sacrificial anode and impressed current cathodic		
		methods.		
32.		Surface coatings-metallic coatings-methods of	Apply	
		application. Electroless plating of Nickel.		
		Bridge Class # 5		
		I Mid Examinations		
	UNIT -			
33.		Introduction to representation of 3- dimensional	Understand	
		structures, structural and stereoisomers.		
34.	9	Configurations, symmetry and chirality.	Understand	4
35.		Enantiomers and diastereomers.	Remember	_
36.		Optical activity and Absolute configuration	Understand	
		Bridge Class # 6		
	UNIT -	- IV contd.		
37.		Conformational analysis of n-butane.	Apply	
38.		Substitution reactions: Nucleophilic substitution	Understand	
	10	reactions		
39.		Mechanism of SN ₁ and Mechanism of SN ₂ reaction.	Understand	
40.		Electrophilic and nucleophilic addition reactions	Understand	
		Bridge Class # 7		
41.		Addition of HBr to propene. Markownikoff and anti	Understand,	
		Markownikoff's additions.	Remember	
42.		Grignard additions on carbonyl compounds.	Apply	
43.		Elimination reactions: Dehydro halogenations of	Understand	
	11	alkyl halides. Saytzeff rule.		4
44.		Oxidation of alcohols using KMnO ₄ and chromic	Apply	
		acid.Reduction of carbonyl compounds using LiAlH ₄		
		and NaBH ₄ .		
		Bridge Class # 8		
45.		Hydroboration of olefins.	Understand	
46.		Structure, synthesis and pharmaceutical applications	Apply,	
	12	of Paracetamol and Aspirin.	Understand	
47.		Revision		
48.		Revision		
		Mock Test – II		
	UNIT -	·		
49.	_	Principles of spectroscopy	Theory	
50.		selection rules and its applications	Understand	
51.	13	Vibrational spectroscopy	Theory	3
52.	_	Rotational spectroscopy	Theory	
		Bridge Class # 9		
53.	14	Basic concepts of Nuclear Magnetic Resonance	Understand	

		spectroscopy	
54.		Chemical Shift	Analyze
55.		Introduction to Magnetic resonance imaging	create
56.		Revision	
		Bridge Class # 10	
57.		Revision	
58.		Revision	
59.	15	Revision	
60.		Revision	
		Bridge Class # 11	
61.		Mock test – 1	
62.		Paper discussion and revision	
63.	16	Mock test – 2	
64.		Paper discussion and Revision	
		Bridge Class # 12	
		II Mid Examinations	

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

	Program Outcomes (PO's)											
CO's	PO	P	P	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	O2	03	4	5	6	7	8	9	10	11	12
CO1	1	-	-		-	-	-	-	-	-	-	-
CO2	1	1	1	1	-	1	2	-	-	-	-	-
CO3	1	1	1	1	-	1	2	-	-	-	-	-
CO4	1		1	1	-	1	-	_	-	-	-	-
CO5	1		-	1	-	-	-	-	-	-	-	-
Average (Rounded)	1	0.4	0.6	0.8	-	0.6	0.8	-	-	-	-	_

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High) -: None

X. QUESTION BANK: (JNTUH)

Definitions of the different levels of cognitive skills in Bloom's taxonomy marked in descriptive questions (where the highest level in question bits is only marked) are as follows:

BLOOMS LEVEL	COGNITIVE SKILL	DEFINITION				
Level-1 (L1):	Knowledge	Recalling/Retrieving relevant terminology, specific				
REMEMBER		facts, or different procedures related to information				
		and/or course topics. (At this level, student remembers				
		something, but may not really understand it fully.)				
Level-2 (L2) :	Comprehension	Determining the meaning of instructional messages				
UNDERSTAND		(facts, definitions, concepts, graphics etc.)				
Level-3 (L3) :	Application	Carrying out or use previously learned information in				
APPLY		another familiar situations or in problem solving				

Level–4 (L4) : ANALYZE	Analysis	Breaking information into its constituent parts and detecting how the parts relate to one another and to an overall structure or purpose. Analysis refers to the process of examining information in order to make conclusions regarding cause and effect, interpreting motives, making inferences, or finding evidence to support statements/arguments
Level–5 (L5) : EVALUATE	Evaluation	Making judgment's based on criteria and standards, personal values or opinions
Level–6 (L6) : CREATE	Synthesis	Create or uniquely apply prior knowledge and/or skills to form a novel, coherent whole or original product or produce new and original thoughts, ideas, processes,

DESCRIPTIVE QUESTIONS: (WITH BLOOMS PHRASES)

UNIT I

S.no	Short Answer Questions	Blooms	Course
		taxonomy	out come
		Level	
1	What are atomic and molecular orbital?	Remember	1
2	Calculate the bond order in molecules of O ₂ , O ₂ -, O ₂ ² -	Apply	1
3	Define bond order. Explain the factors affecting it	Remember	1
4	Write notes on Linear combination of atomic orbitals	Remember	1
5	What is meant by doping, and how it affects on conduction?	Understand	1
6	Calculate the bond order in molecules of N ₂ ⁺ , N ₂ ⁻	Apply	1
7	What is the reason for crystal field splitting	Apply	1
8	What are the factors effecting the magnitude of crystal field	Understand	1
	splitting		
9	Explain the effect of doping on conductance	Apply	1
10	What are the differences between atomic and molecular orbitals	Remember	1

S.	Long Answer Question	Blooms	Course
No		taxonomy	out
		Level	come
1	Draw the molecular orbital energy level diagrams of N ₂ , O ₂	understand	1
2	What is the reason for crystal field splitting and what are the	Apply	1
	factors affecting crystal field splitting?		
3	Explain the important postulates of Molecular orbital theory	Understand	1
	Explain the CFT splitting in octahedral and tetrahedral geometries?		
5	Write salient features of CFT?	Remember	1
6	Draw the molecular orbital energy level diagrams of F ₂ and explain	Remember	1
	its bond order		
7	Write a note on LCAO	Remember	1
8	Write an account on molecular orbital theory	Understand	1
9	Explain about crystal field theory	Understand	1
10	Mention the different between bonding orbitals and anti bonding	Remember	1
	orbitals		

UNIT – II

S.	Short Answer Questions	Blooms	Course

No		taxonomy Level	out come
1	Why are NH ₄ Cl and NH ₄ OH buffer added during the determination of hardness?	Apply	2
2	What is the indicator used in EDTA method?	Remember	2
3	A sample of hard water contains 14.6 g of Mg(HCO ₃) ₂ and 9.5 g of MgCl ₂ and 13.6 g of CaSO ₄ . What is the temporary, permanent and total hardness of the water sample?	Apply	2
4	Explain the role of anion exchange resin.	Understand	2
5	How is caustic embrittlement avoided?	Understand	2
6	What is carbonate hardness? How can you remove carbonate hardness?	Remember	2
7	Explain why hard water consumes a lot of soap?	Apply	2
8	What is the advantage of break-point chlorination?	Remember	2
9	What is the phosphate conditioning?	Understand	2
10	Give the specifications of potable water.	Remember	2

S.	Long Answer Questions	Blooms	Course
no		taxonomy	out
		Level	come
1	Distinguish between temporary and permanent hardness of water.	Understand	2
2	Write a note on complexometric titrations used for estimation of	Understand	2
	hardness of water by EDTA method		
3	Why is hard water harmful to boilers?	Understand	2
	Discuss the causes and harmful effects of scale formation.		
4	What are the factors that lead to caustic embrittlement in boilers? How	Remember	2
	can it be prevented?		
5	Explain the softening of water by Ion exchange process.	Remember	2
6	Define Potable water and give an account of disinfection of water by	Apply	2
	chlorination and ozonisation.		
7	Define Desalination and explain the methods of desalination.	Understand	2
8	Write a brief account on internal conditional methods of treatment of	Apply	2
	water.		
9	Explain the difference between scale and sludge	Understand	2
10	Write note on specification of potable water and its treatment	Apply	2

UNIT – III

S. No	Short answer type questions	Blooms taxonomy Level	Cour se out come
1	Write the Nernst equation in terms of reduction potential.	Understand	3
2	What is reference electrode?	Remember	3
3	What do you mean by a salt bridge? Why is it used?	Understand	3

4	What is a secondary reference electrode?	Apply	3
5	Why is coating of zinc on iron called sacrificial anode	Analyse	3
6	What is the difference between primary and secondary cell	Understand	3
7	Lead acid battery is not completely sealed – Explain	Analyse	3
8	What is an anode material in a lithium ion battery	Understand	3
9	Why non aqueous solvent is used in a Lithium ion battery	Understand	3
10	What is Dry corrosion?	Remember	3

S.No	Long Answer Questions	Blooms	Course
		taxonomy Level	out
1	What do you mean by sacrificial anodic protection explain with	Understand	come 3
	suitable example	Onderstand	3
2	Explain the construction and working of Lead acid battery.	Apply	3
3	How can you determine the PH of an unknown solution by using Quinone-Hydrone electrode	Remember	3
4	Explain Calomel electrode. Mention its advantages.	Remember	3
5	Design a cell to determine the PH of an aqueous acid unknown solution by using a Calomel electrode	Understand	3
6	What is a Glass electrode? Explain how can you determine the PH of an unknown solution by using glass electrode	Understand	3
7	Explain the mechanism involved in Electro chemical corrosion with reactions	Apply	3
8	Write an account of lithium ion battery	Understand	3
9	Explain the chemical reaction involved in electrochemical corrosion	Remember	3
10	Iron corrodes faster than aluminium? explain	Apply	3

UNIT - IV

S.No	Short answer questions	Blooms	Course
		taxonomy	out
		Level	come
1	What are stereoisomers?	Understand	4
2	What do you mean by specific rotation?	Remember	4
3	Differentiate between diasteromers and enantiomers	Remember	4
4	What is Markownikoff rule	Understand	4
5	Allenes do not contain any chiral centre but still exhibit optical activity. Explain	Understand	4
6	Why proxide effect is only confined to addition of only HBr	Apply	4
7	State and explain Saytzeff rule?	Remember	4
8	Why Markownikoff's rule fails in the addition of HBr to	Apply	4

	propene in presence of H ₂ O ₂ .		
9	Why is rate of SN ¹ reaction much faster in polar solvents than in a non-polar solvent.	Apply	4
10	How can it be decided whether the following reactions proceeds by SN ¹ and SN ² mechanism	Apply	4

S.No	Long answer questions	Blooms taxonomy Level	Course out come
1	What are SN ¹ and SN ² reactions. Write the mechanism with suitable examples and their stereochemistry.	Understand	4
2	Explain different conformations of butane with the potential energy diagram	Understand	4
3	What are elimination reactions? Explain dehydrohalogenations of alkyl halide with suitable examples.	Apply	4
4	What is isomerism? How it is classified? Explain with suitable examples?	Remember	4
5	Explain β elimination reaction with a suitable example?	Understand	4
6	State and explain Markownikoff rule with a suitable example?	Remember	4
7	What are addition reactions? Explain the possible mechanism for addition reactions with an example each.	Apply	4
8	Write synthesis and uses of paracetamol	Apply	4
9	Write synthesis and uses of Aspirin.	Apply	4
10	Explain how competing E2 and SN2 reactions are affected by the following factors a) structure of substrate b) reagentc) solvent	Apply	4

UNIT – V

S.No	Short answer questions	Blooms	Course
		taxonomy	out
		Level	come
1	With the help of IR how will you distinguish between o-nitro phenol and p- nitrophenol	Understand	5
2	Define the term Red shift and blue shift. Increased conjugation will cause which shift?	Remember	5
3	Find the number of fundamental modes of vibration/vibrational degrees of freedom in linear and non linear molecules such as C ₆ H ₆ , CO ₂ , H ₂ O, SO ₂ , N ₂ O, HCN	Understand	5

4	What is meant by the term chemical shift explain	Understand	5
5	Why C ₁₂ ,O ₁₆ , O ₁₈ and S ₃₂ do not exhibit NMR Spectrum	Remember	5
6	What is the necessary condition for a molecule to absorb IR radiation?	Understand	5
7	What is selection rule	Remember	5
8	How will you distinguish between propanaldehyde and propanone	Understand	5
9	Explain the effect of polar solvents on both n to π^* and π to π^*	Apply	5
10	CO2 is IR active. Explain	Apply	5

S.No	Long answer questions	Blooms taxonomy Level	Course out come
1	Describe briefly the theory of NMR spectroscopy? What information can be obtained from NMR absorption peaks?	Apply	5
2	Explain the terms chromophore and auxochrome with suitable examples. Write any 5 applications of UV spectroscopy.	Understand	5
3	Write any 5 applications of IR spectroscopy	Understand	5
4	Write any 5 applications of NMR spectroscopy	Remember	5
5	Write the basic principles of IR spectroscopy. Describe various molecular vibrations in the technique.	Understand	5
6	Schematically represent and discuss various types of electronic transitions and hence show that n to π^* transition is the lowest energy demanding among all of them	Understand	5
7	How would you analyze a sample by spectrophotometer method?	Apply	5
8	What is Beer-Lambert law? Show the absorption is linearly proportional to concentration of the solution.	Remember	5
9	Describe various absorption laws involved in UV-Visible spectral method. Derive Lambert-Beer's law.	Understand	5
10	Explain briefly about MRI imaging technique.	Apply	5

XI. OBJECTIVE QUESTIONS: JNTUH

1.	The bond order of N_2 molecule is a) 2.0 b) 3.0 c) 2.5 d) 1.0					
2.	The bond order of a molecule can be calculated using MO	oT as				
3.	The electron density of Pi Molecular Orbital along internuclear axis is					
4.	The magnetic nature of O ₂ molecule is					
	-					
	The bond energy of N_2 isthan that of O_2 .					
6.	Ligands remove the degeneracy ofof the me	etal ion.				
7.	The most stable amongst the following: O_2 , O_2^+ , O_2^- , O_2^{-2} is	S				
8.	The bond order of F ₂ molecule is					
9.	Bond order =					
10	. What is the bond order of O ₂ molecule					
11	The bond order is proportional to its bond length. a) directly b) Inversely c) no relation					
12	Which of the following molecular orbitals have lowest energy					
13	a) $\sigma 2p_z$ b) $\sigma^* 2p_z$ c) $\pi 2px$. In O_2 molecule, the empty molecular orbital is a) $\sigma 2S$ b) $\sigma^* 2S$ c) $\sigma^* 2P_z$	d) π*2px				
14	a) $\sigma 2S$ b) $\sigma^* 2S$ c) $\sigma^* 2P_z$. Which of the following is paramagnetic a) O_2^- b) CN^- c) CO	d) $\sigma 2P_z$				
15	a) O ₂ b) CN c) CO	d) NO ⁺				
	. Which among the following will have the highest bond length a) O_2 b) O_2^+ c) O_2^-	d) O_2^{-2}				
16	The bond order of O_2^+ molecule is a) 1 b) 2 c) 2.5	d) 3				
17	. Which of the following is diamagnetic	d) O_2^{-2}				
18	a) O_2 b) O_2^+ c) O_2^- . Molecular orbitals are classified as	$\mathbf{a}) \mathbf{O}_2$				
	a) σ b) π c) n . Any p-orbital can accommodate upto	d) bonding & anti-bonding				
	a) 4 electrons b) 6 electrons c) 2 electrons	d) 8 electrons				
20	. In an octahedral crystal field, eg., orbitals are a) raised the energy by $0.4~\Delta0$ b) lowered the energy c) lowered the energy by $0.4~\Delta0$ d) raised the energy b	y by 0.6 Δ0 y 0.6 Δ0				
UNIT	-II					
1.	Cation exchange resin contains mobile ions.					
2.	Hardness of water is expressed in terms of					
3.	The amount of chlorine required to kill bacteria and called	to remove organic matter is				
4.	CaSO ₄ causeshardness to water.					
5.	Addition of chlorine to water producesacid which acts as powerful germicide.					
6.	Hardness that can be easily removed by boiling and filt hardness.	ration is known as				
7.	is used calgon conditioning.					
	Process of removing salts from water is called as	<u></u> .				
9.	Exhausted anion exchangers are regenerated by using	·				

10.	Agar-Agar is used in	water	conditioning.	
11.	method is.		_	water sample by EDTA
	a) Starch	b) EBT	-,	d) Methyl orange
12.		of water is caused due	•	
			c) Magnesium bicarl	oonate d) None
13.		desalination of water		
	· •	•	s c) Ion exchange prod	
14.		• • •	d within the boiler is c	alled.
	a) Scale b) Slu	,		on
15.	Permanent hardness	of water is caused due	to the presence of.	
	a) Calcium carbonate	e b) Calcium chlorid	le c) Magnesium bio	earbonate d) None
16.	Tannin, Lignin are u	sed for		
	a) Phosphate condition	oning b) Ca	rbonate conditioning	
	c) Colloidal conditio	ning d) Ca	lgon conditioning	
17.	Caustic embrittlemen	nt is caused due to pres	sence of	
	a) NaCl b) Na	OH c) MgCO ₃	d) KNO ₃	
18.	Hard water after pass	sing through cation ex	changer is	
	a) alkaline b) aci	dic c) neutral	d) slightly alkaline	
19.	Hard water + buffer	(pH 10) + indicator (E	BT) developscol	lour
	a) orange b) blu	e c) pink	d) wine-red	
20.	Which of the following	ng water sample has n	naximum hardness con	taining?
	a) 10 mg/L CaSO ₄	b) 10 mg/L MgCl ₂	c) 10 mg/L MgSO ₄	d) 10 mg/L CaCl ₂
UNIT	– III			
1.		_	uces stable and reprodu	=
			anode,is use	ed as a cathode.
	Tinning is	•		
		ty		
		ies cannot be recharge		
		is used		
		$Z_{\rm n}/Z_{\rm n}^{+2}$ (1 M) // $C_{\rm u}^{+2}/C_{\rm n}$		
			e iscorr	osion.
		cess of coating		
			han the cathodic coatin	
11.		=	ical energy into electric	= -
	a) Galvanic cell	b) Daniel cell	c) Dry cell	d) all
12.	In the anodic chambe	er which reaction takes	s place.	
	a) Oxidation	b) Reduction	c) Addition	d) Substitution
13.	In the cathodic cham	ber which reaction tak	es place.	
	a) Oxidation	b) Reduction	c) Addition	d) Substitution
14.	Origin of electrode p	otential is explained in	1	
	a) Nernst theory	b) Helmholtz double	layer theory	

	c) Galvanic theory d)	Electrochemical	theory			
15	. In two half cells, the one	which is having l	nigh nega	itive value a	cts as	
	a) anode b)	Cathode	c) Dry	cell	d) No	ne
16	. Rusting of iron is an example.	mple for .	, •		,	
	a) Dry corrosion b)	-	corrosion	c) acid cor	rosion	d) None
17	. Coating used for the iron					
1,	a) Zn b) Sn	c) Pt	_	d) Al	oa witii	·
1.9	The potentials of the two	,		,	and 0.6 V	The emf of the
10	cell formed by the two el		iii a ccii	arc 0.2+ v	and 0.0 v	. The enii of the
	•		94 V 7	4) 0 04 W		
10	a) 0.36 V b) -0.36 V c. One of the common sacri	*		u) -0.64 V		
15				d) Titominu		
20				d) Titaniui		
20	During discharging opera					
	a) decreases b) not affect	ected c) in	creased	d) H ₂ SO ₄ 1	is not used	
UNIT	' - IV					
	A molecule that can't be					
	Theconfirm					
	states that i					
4.	A compound is said to be	2	_, when	it rotates the	e plan pola	rised light.
5.	Polar protic solvents favo	ourreacti	ion mech	anism.		
6.	HBr addition to propene	in presence of per	roxides g	ives	as a	major product.
7.	In SN ² mechanism, the st	tereochemistry of	the com	pound	•	
8.	Write the structure of asp	oirin	·			
9.	Write the structure of par	acetamol	•			
10	. Electrophilic reagents are	echarge	ed and ele	ectron	com	pounds.
11	. The number of stereo iso	omers present in t	artaric ac	id		
	a) 1 b) 2 c) 3	d) 4				
12	. The correct reactivity or	der of A) 1 ⁰ alky	l halide,	B) 2 ⁰ alkyl	halide C)	3 ⁰ alkyl halide
	toward SN ¹ reaction	•		•		•
	a) A>B>C b) B>C>A	A c) C>A>B	d) C>B>	>A		
13	. The number of optically	*	,			
	a) 4 b) 8 c) 16	d) 2	C			
14	. The correct reactivity or	,	l halide.	B) 2 ⁰ alkyl	halide C) 3	30 alkyl halide
	towards SN ² reaction	, , ,	,	,	, .	, ,
	a) $A > B > C$ b) $B > C$	>A c) $C > A >$	B d) C	> B > A		
15	The major product in the				nce of benz	ovl peroxide
10	a) 1-bromopropane b) 2			-		• •
16	5. The major product in the				a) ii prop	unc
10	b) 1-bromopropane b) 2				d) n prop	ana
17						
1 /	. Which among the follow	mg wm snow mg	nest reac	uvity iii iiuC	леориние 8	อนบริเนนเเปเ
	reaction	a) CII CI	1) OII	т		
1.0	a) CH ₃ F b) CH ₃ Br	c) CH ₃ Cl	d) CH		1	C
18	S. SN ¹ mechanism for the h	ydrolysis of an al	kyi halid	e involves t	ne tormati	on oi
	intermediate					

	a) carbocation b) carbanion c) free radical d) carbene Which of the following is an electrophile a) NH ₃ b) H ₂ O c) SO ₃ d) ROH			
20	a) Br ₂ b) HBr c) H ₂ O d) HCl			
UNIT	- V			
1.	Number of vibrational degrees of freedom in HCN			
	A molecule can absorb IR radiation only when its absorption cause a change in .			
3.	A set of protons with same chemical environment are called as protons.			
4.	The finger print region is between and			
5.	The splitting of NMR signal lines in the spectrum into two or more components is called .			
6.	is used as reference standard for measurement of chemical shifts in			
	NMR spectroscopy.			
7.	In UV-Visible spectroscopy, shift of absorption maxima (λ_{max}) to shorter wavelength is called			
8.	The functional group responsible for absorption in UV-visible region is called			
9.	In NMR spectroscopy, the radiation used for nuclear excitation is called			
	. In IR spectroscopy, no. of fundamental modes of vibrations for H ₂ O is			
11	. Which of the following compounds have most deshielded protons			
	a) CH ₃ I b) CH ₃ Br c) CH ₃ Cl d) CH ₄			
12	. How many signals would the following molecule show in its ¹ H NMR spectrum? of			
	benzene			
10	a) 5 b)1 c) 6 d) 8			
13	In NMR spectroscopy, the radiation used for nuclear excitation is			
1.4	a) microwaves b) IR c) Radio wave d) UV			
14	. A quartet has intensity ratio a) 1:3:2:1 b)1:2:3:1 c)1:3:3:1 d)1:1:2:3			
15	Increasing order of wavelength is			
13	a) x-ray, UV, IR, microwave b) microwave, x-ray, UV, IR, c) x-ray, IR, microwave,			
	UV d) UV, IR, microwave, x-ray			
16	. Number of vibrational degrees of freedom for CO2 is			
	a) 2 b)3 c)4 d)1			
17	. The value of TMS protons in δ scale is			
10	a) 10 b)0 c)not predictable d)-10			
10	. Radiation source for UV-Visible spectrophotometer isa) Tungsten filament lampb) Nernst glower			
	c) xenon discharge tube d) Heated nichrome wire			
19	. When there are n-protons adjacent to a given proton, the multiplying of its NMR peak is given by			
	a) 2n+1 b)n+1 c) 2n-1 d) n2			
20.	Which of the following molecules will not give rotational spectra? a) CO b) HCl c) HBr d) N ₂			

XII. GATE QUESTIONS: NA

XIII. WEBSITES:

- 1. http://nptel.ac.in/courses/104103019/40
- 2. http://nptel.ac.in/courses/104105039/
- 3. http://pubs.acs.org/doi/abs/10.1021/ed059p724
- 4. ocw.mit.edu > Courses
- 5. online.stanford.edu/course/introduction-chemical-engineering-self-study-resource
- 6. Engineering chemistry (NPTEL web-book), by B.L. Tembe, Kamaluddin and M.S. Krishnan.

XIV. EXPERT DETAILS:

- 1. Dr Y. Bharathi Kumari, Retd Professor, Department of Chemistry, JNTU, Hyderabad
- 2. Dr. B. Rama Devi, Department of Chemistry, JNTU, Hyderabad

XV. JOURNALS: Journal of Industrial and Engineering Chemistry: Elsevier

XVI. LIST OF TOPICS FOR STUDENT SEMINARS:

- 1. Batteries
- 2. Waste water Treatment methods
- 3. stereochemistry
- 4. Crystal Field theory
- 5. NMR applications in medical field

XVII. CASE STUDIES / SMALL PROJECTS:

- 1. Estimation of Hardness of water
- 2. Preparation of Drugs
- 3. Optical activity measurements of some R and S drugs
- 4. NMR spectra interpretation of some compounds
- 5. Applications of MRI in diagnosis of diseases