

BASIC ELECTRICAL ENGINEERING

Subject Code: EE103ES

Regulations: R18 - JNTUH

Class : I Year B.Tech II Semester

Department of Science and Humanities

BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

Ibrahimpatnam - 501 510, Hyderabad

BASIC ELECTRICAL ENGINEERING (EE103ES) COURSE PLANNER

I. COURSE OVERVIEW

This course introduces the basic concepts of circuit analysis which is the foundation for all subjects of the Electrical Engineering discipline. The emphasis of this course if laid on the basic analysis of circuits which includes, DC machines, transformers, AC machines, and batteries.

II. PRE REQUISITES:

The knowledge of following subjects is essential to understand the subject:

- 1. Mathematics
- 2. Physics

III. COURSE OBJECTIVE:

1	To introduce the concepts of electrical circuits and its components	
2	To understand magnetic circuits, DC circuits and AC single phase & three phase	
	circuits	
3	To study and understand the different types of Transformers	
4	To study and understand the different types of DC/AC machines	
5	To introduce various switches & batteries	

IV. COURSE OUTCOMES:

At the end of the course the student will be in a position to -

S. No	Description Bloom's taxonomy level			
1	To analyze and solve electrical circuits using	Knowledge, Understand		
1	network laws and theorem	(Level 1, Level 2)		
2	To understand and analyze basic Electric and Magnetic circuits	Apply, Analyze (Level 3, Level 4)		
3	To study the working principles of Electrical Machines	Knowledge, Apply (Level 1, Level 3)		
4	To introduce various switches & batteries	Knowledge, Understand (Level 1, Level 2)		

V. HOW PROGRAM OUTCOMES ARE ASSESSED

	Program Outcomes	Level	Proficiency assed by
PO1	Engineering knowledge: Apply the		
	knowledge of mathematics, science,		
	engineering fundamentals, and an	3	Mock tests
	engineering specialization to the		
	solution of complex engineering		

ATTEN	
INPARTING VALUE BASED E	OUCATION

	nrohlame				
DCC	problems.				
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Assignments, Mock tests		
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	1	Case studies		
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Assignments		
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	1	Assignments, Mock tests		
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	1	Project models		
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and	-	-		

	The last
	I
E T	
MPARTING VALLE	RASED EDUCATION

	need for sustainable development.		
PO8	Ethics: Apply ethical principles and		
108			
	±		-
	T		
DOO	engineering practice.		
PO9	Individual and team work: Function		
	effectively as an individual, and as a		-
	member or leader in diverse teams, and		
	in multidisciplinary settings.		
PO10	Communication: Communicate		
	effectively on complex engineering		
	activities with the engineering		
	community and with society at large,		
	such as, being able to comprehend and		-
	write effective reports and design		
	documentation, make effective		
	presentations, and give and receive		
	clear instructions.		
PO11	Project management and finance:		-
	Demonstrate knowledge and		
	understanding of the engineering and		
	management principles and apply these		
	to one's own work, as a member and		-
	leader in a team, to manage projects		
	and in multidisciplinary environments.		
	•		
PO12	8 8 8		
	need for, and have the preparation and		
	ability to engage in independent and	1	-
	life-long learning in the broadest		
	context of technological change.		

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

-: None

VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

	Program Specific Outcomes	Level	Proficiency assed by
PSO1	Talented to analyze, design and implement electrical & electronics systems and deal with the rapid pace of industrial innovations and developments	2	Assignments, Mock tests

	37
E F	
INPARTING VALUE	DASED EDUCATION

PSO2	Skillful to use application and		
	control techniques for research and	2	Assignments,
	advanced studies in Electrical and	2	Mock tests
	Electronics engineering domain		

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

- : None

VII. COURSE CONTENT:

JNTUH SYLLABUS

UNIT-I: D.C. Circuits

Electrical circuit elements (R, L and C), voltage and current sources, KVL&KCL, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Timedomain analysis of first-order RL and RC circuits.

UNIT-II: A.C. Circuits

Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance in series RL-C circuit. Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT-III: Transformers

Ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

UNIT-IV: Electrical Machines

Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited dc motor. Construction and working of synchronous generators.

UNIT-V: Electrical Installations

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

Suggested Text-Books/Reference-Books:

1. Basic Electrical Engineering - D.P. Kothari and I.J. Nagrath, 3rd edition 2010, Tata McGraw Hill.

- 2. D.C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 3. L.S. Bobrow, Fundamentals of Electrical Engineering", Oxford University Press, 2011
- 4. Electrical and Electronics Technology, E. Hughes, 10th Edition, Pearson, 2010
- 5. Electrical Engineering Fundamentals, Vincent Deltoro, Second Edition, Prentice Hall India, 1989.

VIII. LESSON PLAN-COURSE SCHEDULE:

Lecture	Week	TOPIC	Course learning	Reference
No.	No.	10110	outcomes	Reference
U	NIT-I: D	.C. Circuits		
1		Introduction	Define basic terms like current, voltage	
2	1	Electrical circuit elements (R, L and C)	Know about basic electrical circuit elements	
3		Electrical circuit elements (R, L and C)	Know about basic electrical circuit elements	
4		voltage and current sources	Know about electrical sources	
5		KVL&KCL	Understanding the laws	
6		analysis of simple circuits with dc excitation	Analyze various responses in electrical circuits	
7		problems	Evaluate voltage drop and power loss calculations	Text Book: 1,3,5
8	2	Superposition Theorem	Applying alternative method to calculate responses	
9		Problems	Evaluate the circuit response using superposition theorem	
10		Thevenin and Norton Theorems	Applying alternative method to calculate responses	
11		Problems	Evaluate the circuit response using Thevenin & Norton theorem	
12	3	Time-domain analysis of first-order RL and RC circuits.	Analyze the circuit response with d	

WPARTING VALUE BASED EDUCATION

Text
Book:1,2

				200
			impedance &	
	6		current response of	
			AC circuit	
26		resonance in series RL-C circuit	Know about the	-
			condition of	
			resonance	
27	_	Problems	Evaluate the value	-
21		1 Toblems	of resonant	
		Duides slees 2	frequency	-
20		Bridge class 3	Timed a west are disease the a	-
28		Three-phase balanced circuits	Understanding the	
20			three phase circuits	-
29		voltage and current relations in star and	Know the relation	
		delta	between phase &	T
			line quantities	Text
30		Problems	Evaluate the value	Book:1,2
			of phase, line	
	7		voltages & currents	
			in a three phase	
			circuit	
31		Problems	Evaluate the value	
			of phase, line	
			voltages & currents	
			in a three phase	
			circuit	
		Bridge class 4		-
UNI	Γ-III: Tra	ansformers		
32		Introduction to transformer	How transformer	
			works	
33	\exists_8	Ideal and practical transformer	Distinguish two	1
33		racar and practical transformer	types of	
			transformer	
			techniques	Text
24		aguivalant ainquit	1	Book:1,2,4
34		equivalent circuit	Analyze the	DOUK. 1, 4,4
			electrical equivalent	
			model of	
25	_	1	transformer	-
35		losses in transformers	Know about	
			various losses	 -
		Bridge class 5	<u> </u>	
	(Week			T
36		regulation and efficiency	Know the value of	
			voltage drop]
37		Problems	Evaluate the	
			efficiency &	
			voltage regulation	
			of a transformer	
38	10	Auto-transformer	Distinguish	Text
	<u> </u>			I

				An Antika Witte Byasp Epoc
			between	Book:1,2,4
			transformer & auto	
			transformer	
39		Three-phase transformer connections.	Know about	
			various types of	
			three phase	
			transformers	
		Bridge class 6		
UN	T-IV: Ele	ectrical Machines		
40		Generation of rotating magnetic fields	How generator works	
41		Construction and working of a three-	What are the	
	11	phase induction motor	various parts of	
		F	three-phase	
			induction motor	
42		Significance of torque-slip	How motor torque	1
		characteristic	varies when it is	
		VIIII (10 10 12 12 12 12 12 12 12 12 12 12 12 12 12 	subjected to speed	
			variations	
43		Loss components and efficiency	Know about	1
		2000 Components und Circlestoy	various losses	
		Bridge class 7		-
44		starting methods of induction motor	How to start an	-
		starting methods of medicion motor	induction motor	Text
45		speed control of induction motor	How to control the	Book:1,2,4
	12		speed of induction	
			motor	
46		Single-phase induction motor	Understanding the	-
		and the second	working principle	
			of	
			induction	
			motor	
47		Construction and working of induction	Know about	-
		motor	various parts of	
			induction motor	
		Bridge class 8		1
48		Construction of separately excited dc	Understanding the	1
		motor	constructional	
			details of DC	
			motors	
49		working of separately excited dc motor	Know the working	1
	13		principle of DC	
			motor	
50		torque-speed characteristics	How torque varies	1
			with the changes in	
			the speed	
51		speed control of separately excited dc	How to vary the	1
		motor	speed of a DC	
	ı		L I	ı

TI.	
IMPARTING VALUE	BASED EDUCATION

	1			T	
				motor	
		Bridge class 9			
52		Construction of synchronous generat	ors	Understanding the	
				constructional	
				details of	
	14			generators	
53		working of synchronous generators		How generator	
				operates	
54		Types of synchronous generators		Distinguish various	
				types of AC	
				generators	
		Mock test 2			
		Bridge class 10			
UNI	Γ-V: Ele	ctrical Installations			
55		Components of LT Switchgear	Kı	now about switch	
			pu	rpose & how it	
				erates	
56		Switch Fuse Unit (SFU), MCB,	Uı	nderstanding about]
		ELCB, MCCB	the	e functions of various	
	15		SW	ritches	
57		Types of Wires and Cables		assify different types	-
31		Types of whes and caoles		wires & cables	
58		Earthing	+	whes & easies w to do earthing	_
30		Bridge class 11	11	ow to do cartilling	Text
59		Types of Batteries	Cl	assify different types	Book:1,2,5
		Types of Butteries		batteries	
60		Important Characteristics for	_	now about battery	
		Batteries		aracteristics	
61	16	Elementary calculations for energy	_	ow to Calculate	•
		consumption		ergy consumed by	
		1		rious loads	
62		Problems	Ev	valuate the energy	
				nsumed by various	
				ads	
		Bridge class 12			
63		power factor improvement and	Uı	nderstanding the	1
		battery backup		wer factor improving	
				ethods	
64	17	Revision			1
65		Previous question papers solving			1
66		Previous question papers solving			1
		Bridge class 13			1
	(II F	Examinations	

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

0 :	Program Outcomes (PO)	Program	
-----	-----------------------	---------	--

									Spec Outco	cific omes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	2	2	-	-	-	-	-	-	1	2	1
CO2	2	2	-	1	1	-	-	-	-	-	-	1	2	2
CO3	3	-	-	-	-	-	-	-	-	-	-	1	-	1
CO4	2	-	-	-	-	2	-	-	-	-	-	-	2	2
Avg	2.25	1.25	0.5	0.75	0.75	0.5	-	-	-	-	-	0.75	1.5	1.5

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: None

X. JUSTIFICATIONS FOR CO-PO MAPPING

MAPPING	LOW(1)/	JUSTIFICATION	
	MEDIUM(2)/	00012210111	
	HIGH(3)		
CO1-PO1	2	Student learns basic knowledge about electrical circuits.	
CO1-PO2	3	Students analyze electrical circuits using theorems.	
CO1-PO3	2	Students design mathematical models of electrical circuits.	
CO1-PO4	2	Students investigate complex problems.	
CO1-PO5	2	Students analyze circuits using software tools.	
CO1-PO12	1	Students can be able to apply his knowledge on various	
		engineering problems and learn advanced technologies.	
CO1-PSO1	2	Students can design and analyze different electrical circuits.	
CO1-PSO2	1	Students can apply their knowledge to conduct research.	
CO2-PO1	2	Student acquires knowledge about rms and average values of ac	
		signals.	
CO2-PO2	2	Students apply his knowledge to analyze problems.	
CO2-PO4			
CO2-PO5			
CO2-PO12	1	Students can be able to apply his knowledge on various	
		engineering problems and learn advanced technologies.	
CO2-PSO1	2	Students can analyze problems.	
CO2-PSO2	2	Students can apply his knowledge on analytical techniques to	
		conduct research.	
CO3-PO1	3	Students acquire knowledge about working principles of electrical	
		machines.	
CO3-PO12	1	Students can learn working principles of latest machines.	
CO3-PSO2	1	Students can apply their knowledge to conduct research in	
		developing cost effective electrical machines.	
CO4-PO1	2	Students acquire knowledge on electrical installations.	
CO4-PO6	2	Students learn safety measures regarding installations.	
CO4-PSO1	2	Students can understand and design components of electrical	
		installations.	
CO4-PSO2	2	Students can apply their knowledge to conduct research in	
		developing cost effective components for electrical installations.	

XI. QUESTION BANK: (JNTUH)

DESCRIPTIVE QUESTIONS:

UNIT-I

Short Answer Questions-

S.No	Question	Blooms	Course
		Taxonomy	Outcome
		Level	
1	Demonstrate Thevinin's & Nortons Therorem	Understanding	1
2	The voltage across 5 ohm resistor is 10 Volts. Find the	Remembering	1
	current and power dissipated in the resistor		
3	Explain ohms law and write the properties of resistance	Understanding	1
4	Demonstrate Superposition Theorem	Understanding	1
5	State & explain Kirchoffs laws with an example	Understanding	1

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	For the circuit shown in figure, evaluate the total current, individual currents in each branch. Find the total power consumed 20.0 100 100 100 100	Evaluating	1
2	Evaluate the current through 5 Ω resistor using superposition theorem	Evaluating	1
3	a) State and explain Ohm's law. b) Two coils connected in parallel across 100 V DC supply, takes 10 A current from the Supply. Power dissipated in one coil is 600 W. Find:i) What is the resistance of that coil? ii) What is the	Remembering	1

	current flowing through that coil? iii) What is the current		
	in the other coil? iv) What is the resistance of the other		
	coil?		
4	By using nodal analysis find the current flowing through 3	Remembering	1
	ohms resistor.		
	3 ohms		
	6 ohm \$ \$		
	5 ohm \$ 4 ohms \$ 2 ohms		
	10V 5v 2 onms		
	+		
5	By using loop analysis find the current flowing through 5	Remembering	1
3	ohms resistor.	Remembering	1
	1 ohms		
	\\\\\\		
	2 ohms 3 ohms		
	6 ohm \$ \$		
	5 ohm \$ \$4 ohms		
	10V 5V		
	10V) 5V		
L		I	l .

UNIT-II Short Answer Questions-

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Define Average value, RMS Value, Form Factor and peak factor	Remembering	2
2	Classify the types of AC waveforms.	Understanding	2
3	Write the significance of J operator.	Remembering	2
4	Define an alternating quantity and explain the phasor representation of AC waveform.	Remembering	2
5	Write about addition and multiplication of phasors.	Remembering	2

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Find the Average value, RMS value and form factor of the saw-tooth wave shown	Remembering	2
2	An a.c circuit consists of a resistance of 5 $\mathbf{\Omega}$, an inductance of 0.1 H, and a capacitance of 100 μ F, all in series. Determine for this circuit: a) Total reactance c) Admittance d) Susceptance and e) Conductance	Evaluating	2
3	A 20 ohms resistor is connected across a voltage source V (t) = 200 Sin ωt . Find the current I (t) and the instantaneous power P(t) and also the average power. Draw the relevant waveforms	Remembering	2
4	A 230 V, 50 Hz voltage is applied to a coil of $L=0.5$ H and $R=200$ Ω in series with a capacitor C. What value must C have in order that the total voltage across the coil shall be 250V?	Remembering	2
5	A circuit consisting of variable resistance in series with a capacitance of $80~\mu F$, is connected across a $120~V$, $50Hz$ supply. Find the value of resistance so that the power absorbed is $100W$.	Remembering	2

UNIT-III Short Answer Questions-

S.No	Question	Blooms	Course
		Taxonomy	Outcome
		Level	
1	Explain why transformer rating is in KVA but not KW?	Understanding	3
2	Define Efficiency and Regulation of a transformer.	Remembering	3
3	Write the Principle of a Transformer and define turns ratio	Remembering	3
4	Classify the types of losses in a transformer	Analyze	3
5	Define ideal and practical transformer.	Remembering	3

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Explain the construction of a single phase transformer.	Understanding	3
2	Discuss in detail the difference between the core type and shell type transformer.	Creating	3
3	a) Derive an emf equation of a single phase transformer. b) The maximum flux density in the core of 250/3000 Volts 50 Hz single phase transformer is 1.2 webers per square meter. If the emf per turn is 8 volts determine primary and secondary turns and area of the core	Evaluating	3
4	A 1-φ phase transformer takes 10A on no-load at a power factor of 0.1. The turn's ratio is 4:1. If a load is supplied by the secondary at 200 A, and a power factor of 0.8, find the primary current, and the power factor. Neglect the internal voltage drops in a transformer and also draw the phasor diagram.	Remembering	3
5	(a) The design requirement of a 11,000 / 415 V, 50 Hz, single phase, core-type transformer are approximate emf/turn is 15 V, maximum flux density 1.5 T. Find a suitable number of primary, and secondary turns and the net cross sectional area of the core. (b) Explain different losses in case of transformer.	Remembering	3

UNIT-4

Short Answer Questions-

S.No	Question	Blooms	Course
		Taxonomy	Outcome
		Level	
1	Define Slip of Induction Motor	Remembering	3
2	How can the direction of 3 phase induction motor be	Remembering	3
	reversed		
3	Why single phase induction motors are not self starting	Remembering	3
4	Define back emf.	Understand	3
5	Draw torque-slip characteristics of induction motor	Understand	3

S.No	Question	Blooms	Course
		Taxonomy	Outcome
		Level	

1	Explain briefly how rotating magnetic field is developed	Remembering	3
2	Explain the construction of 3 phase induction motor	Remembering	3
3	Explain the working principle of 3 phase induction motor	Remembering	3
4	State & Explain the typical torque-slip characteristics of 3 phase induction motor	Remembering	3
5	List the various losses that take place in induction motor	Remembering	3

UNIT-5 Short Answer Questions-

S.No	Question	Blooms	Course
		Taxonomy	Outco
		Level	me
1	Explain the causes and effects of low power factor?	Understand	4
2	Define MCB	Remembering	4
3	Define MCCB	Remembering	4
4	Define ELCB	Remembering	4
5	What are different types of cables?	Remembering	4

Long Answer Questions-

S.No	Question	Blooms Taxonomy	Course Outcome
1	Explain various types of batteries along with their characteristics?	Level Understand	4
2	Explain the following devices SFU, MCB, ELCB & MCCB	Understand	4
3	Compare & explain different types of wires and cables.	Understand	4
4	Explain earthing and its importance.	Understand	4

OBJECTIVE QUESTIONS:

JNTUH: UNIT-1

1)	_ elements are c	capable of deliv	ering power to some external device.
A) Active	B) Passive	C) Inductor	D) Resistor
2) The unit o	of Inductance is	·	
(A) Ohms (B	B) Henry (C) Fai	ads (D) Watts	

3) law states that the sum of the currents entering into any node is equal to the sum
of the currents leaving that node.
(A) Kirchhoff's Voltage (B) Faradays (C) Kirchhoff's Current (D) Electromagnetic
4) The flow of electric current in a conductor is due to flow of
(A) Electrons (B) protons (C) electrons & ions (D) charged particles
5) The unit of capacitance is
6) law states that the algebraic sum of all branch voltages around any closed path
in a circuit is always zero at all instants of time.
7) Ampere-Second could be the unit of
8) The resistance of a conductor having a length 'l', area of cross-section 'a' and resistivity
' ρ ' is given as R =
UNIT-2
1. A sine wave has a frequency of 50 Hz. Its angular frequency is radians per second.
2. The standard supply frequency in India is
3. The form factor is the ratio of
4. The Inductor behavior at steady state condition is
5. In R-L circuit current the Voltage.
6. Form Factor is the ratio of []
A) RMS Value/Peak Value B) Mean value/Peak value
C) RMS value/Mean Value D) Mean Value/RMS Value
7. A 60Hz power line voltage of 120V is applied across a resistance of 10 ohms. The RMS value of current [
A) 168A B) 8.48A C) 16.8A D) 12A
8. OHM is the unit of following except []
A) Resistance B) Capacitance C) Capacitive reactance D) Inductive reactance
UNIT-3
 A transformer core is laminated to reduce losses. A) Hysteresis B) Eddy current C) copper D) Windage
2) The no-load current drawn by transformer is usually percent of the full load current. A) 0.2 to 0.5 B) 2 to 5 C) 12 to 15 D) 20 to 30
3) Open circuit test on transformers is conducted to determine losses. A) Hysteresis B) copper C) core D) Eddy current

4) The path of a mag	netic flux in	a transformer	should have	reluctance.
5)	material is	used for the c	construction of transfor	mer core.
6) A 4-pole, 440v i	nduction mo	tor is running	at a slip of 4%. The	speed of the motor is
7) Short circuit test of	on transforme	rs is conducte	d to determine	losses.
8) In a Transformer (Core is lamin	ated to reduce		_
		UNI	T-4	
1) The frame of an ir	iduction moto	or is usually m	nade of	·
A) Silicon steel	B) (Cast Iron	C) Aluminium	D) Bronze
2) In an induction mo	otor, on no-lo	oad the slip is	generally	
A) Less than 1%	B) 1.5%	C) 2%	D) 4%	
3) In inductor motor	or, starting to	orque is	_ proportional to the	square of the applied
voltage.				
A) Directly B) inv	ersely C) i	ndependently	D) not	
4) Slip rings are usua	ılly made of _		material.	
5) The difference bet	ween the syn	chronous spee	ed and rotor speed is kr	nown as
6) A 3- phase slip rin	ng induction r	notor has	rotor.	
7) Emf equation of g	enerator is _			
8) Yoke is made of v	vhich materia	1		
1. Which of the follo A) Varnished Cambr	-		cables?	
2.In case of three cor A) Blue B) Black C)			of the neutral isove	
3. Low tension cable	s are general	ly used upto		
A) 200V B) 500V C) 700V D) 10	00V		
			ded for GI Pipe earthin 8kg c) charcoal 10kg, s	

- 5) A certain appliance uses 350 W. If it is allowed to run continuously for 24 days, how many kilowatt-hours of energy does it consume? a) 20.16 kWh b) 201.6 kWh c) 2.01 kWh d) 4 kWh
- 6) What type of earthing is used by transmission lines _____ a)plate earthing b)rod earthing c) strip earthing b)both a & c e) all of the above
- 7) Power factor can be improved by connecting which among these?
- a) Static capacitors b) Resistors c) Synchronous condensers d) Both (a) and (c).
- 8) The cell which is used as standard cell is:
- a) Dry cell b) Solar cell c) Mercury-Cadmium cell d) Zinc-Carbon cell

WEBSITES:

- 1. http://en.wikipedia.org/wiki/Electric_circuits
- 2. http://www.ieee.org/pes IEEE Power Engineering Society

EXPERT DETAILS:

- 1) A.S. Pabla retired engineer
- 2) Prof S.Siva Naga raju JNTUK
- 3) Prof V.Sankar JNTUA

JOURNALS:

Fundamentals of Electrical engineering (IEEE Press Series on Power Engineering).

LIST OF TOPICS FOR STUDENT SEMINARS:

- 1. Classification of sources.
- 2. Types of AC waveforms
- 3. Working principle of transformer & types
- 4. Working principle of motor & types
- 5. Working principle of generator & types.
- 6. Types of batteries.

CASE STUDIES / SMALL PROJECTS:

- 1. How to make earthing.
- 2. Testing transformer efficiency.